Virulence inhibition by zinc in shiga-toxigenic Escherichia coli.
نویسندگان
چکیده
Previously, our laboratories reported that zinc inhibited expression of several important virulence factors in enteropathogenic Escherichia coli (EPEC) and reduced EPEC-induced intestinal damage in vivo. Since EPEC is genetically related to Shiga-toxigenic E. coli (STEC), we wondered whether the beneficial effects of zinc extended to STEC as well. Treatment options for STEC infection are very limited, since antibiotics tend to exacerbate disease via enhanced toxin production, so a safe intervention for this infection would be welcome. In this study, we report that in STEC strains zinc inhibits adherence to cultured cells as well as expression of EHEC secreted protein A (EspA). In addition, zinc inhibits the expression of Shiga toxin (Stx) at both the protein and the RNA level. Zinc inhibits basal and antibiotic-induced Stx production and inhibits both Stx1 and Stx2 by ≥90% at a concentration of 0.4 mM zinc. Rabbit EPEC strains were selected for acquisition of Stx-encoding bacteriophages, and these rabbit STEC strains (designated RDEC-H19A and E22-stx2) were used to test the effects of zinc in vivo in ligated rabbit intestinal loops. In vivo, zinc reduced fluid secretion into loops, inhibited mucosal adherence, reduced the amount of toxin in the loops, and reduced STEC-induced histological damage (villus blunting). Zinc has beneficial inhibitory effects against STEC strains that parallel those observed in EPEC. In addition, zinc strongly inhibits Stx expression; since Stx is responsible for the extraintestinal effects of STEC infection, such as hemolytic-uremic syndrome (HUS), zinc might be capable of preventing severe sequelae of STEC infection.
منابع مشابه
Evaluation of ehxA, stx1, and stx2 Virulence Gene Prevalence in Cattle Escherichia coli Isolates by Multiplex PCR
Today, it is nearly 25 years past from investigation of Shiga toxigenic Escherichia coli (STEC) which is able to produce Shiga toxins and cause different gastroenteritis. Since incidence of gastroenteritis due to STEC is increasing, it's necessary to develop rapid, specific and accurate procedures like PCR. In this study, we used PCR method to detect and identify STEC in cultures of 55 Escher...
متن کاملShiga toxin-producing Escherichia coli
Shiga toxin-producing Escherichia coli (STEC) cause hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS) in humans. Outbreaks are linked to bovine food sources. STEC O157:H7 has been responsible for the most severe outbreaks worldwide. However, non-O157 serotypes have emerged as important enteric pathogens in several countries. The main virulence factor of STEC is the production of Shig...
متن کاملVirulence characterization of Shiga-toxigenic Escherichia coli isolates from wholesale produce.
The 13 Shiga-toxigenic Escherichia coli (STEC) strains isolated from wholesale spinach and lettuce consisted mostly of serotypes that have not been implicated in illness. Among these strains, however, were two O113:H21 that carried virulence genes common to this pathogenic serotype (stx(2), ehxA, saa, and subAB), suggesting that their presence in ready-to-eat produce may be of health concern.
متن کاملDetection and Molecular Characterization of Sorbitol Negative Shiga Toxigenic Escherichia Coli in Chicken from Northwest of Iran
Shiga toxin-producing Escherichia coli (STEC) are food-borne pathogens primarily associated with the consumption of contaminated ground beef and are an important food safety concern worldwide. STEC has been found to produce a family of related cytotoxins known as Shiga toxins (Stxs). Shiga toxins have been classified into two major classes, Stx1 and Stx2. A single strains of STEC can produce St...
متن کاملZinc blocks SOS-induced antibiotic resistance via inhibition of RecA in Escherichia coli
Zinc inhibits the virulence of diarrheagenic E. coli by inducing the envelope stress response and inhibiting the SOS response. The SOS response is triggered by damage to bacterial DNA. In Shiga-toxigenic E. coli, the SOS response strongly induces the production of Shiga toxins (Stx) and of the bacteriophages that encode the Stx genes. In E. coli, induction of the SOS response is accompanied by ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Infection and immunity
دوره 79 4 شماره
صفحات -
تاریخ انتشار 2011